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Abstract The artificial bee colony is a simple and

effective global optimization algorithm. It has been

successfully applied to solve a wide range of real-world

optimization problem, and later, it was extended to

constrained design problems as well. This paper describes a

self-adaptive constrained artificial bee colony algorithm

for constrained optimization problem based on feasible

rule method and multiobjective optimization method. The

employed bee colony severs as the global search engine for

each population based on feasible rule. Then, the onlooker

bee colony can explore the new search space based on the

multiobjective optimization. In order to enhance the con-

vergence rate of the proposed algorithm, a self-adaptive

modification rate is proposed to make the algorithm can

change many parameters. To verify the performance of our

approach, 24 well-known constrained problems from 2006

IEEE congress on Evolution Computation (CEC2006) are

employed. Experimental results indicate that the proposed

algorithm performs better than, or at least comparable to,

state-of-the-art approaches in terms of the quality of the

resulting solutions from literature.

Keywords Artificial bee colony � Multiobjective

optimization � Feasible rule � Improved algorithm �
Exploration � Exploitation

1 Introduction

Constraint optimization problems play an important role in

many science and engineering disciplines. The constrained

optimization problem can be formulated as the nonlinear

programming is to find x so as to

Min
x

f ðxÞ

where x 2 F � S and f ðxÞ is the objective function. F 2 S

is the feasible region, and S is the decision space bounded

by the lower and upper bounds:

Li� xi�Ui; 1� i� n;

whereas F 2 S is the feasible region defined by a set of m

additional linear and nonlinear constraints:

gjðxÞ� 0; j ¼ 1; . . .; q
hjðxÞ ¼ 0; j ¼ qþ 1; qþ 2; . . .;m

where gjðxÞ is the jth inequality constraint and hjðxÞ is the

jth equality constraint. In both cases, constraints could be

linear or nonlinear. The degree of constraint violation of

individual x on the jth constraint is calculated as follows:

GjðxÞ ¼
max ð0; gjðxÞÞ 1� j� q

max 0; hjðxÞ � e
�
�

�
�

� �

qþ 1� j�m

�

ð1Þ

where e is a positive tolerance value for equality con-

straints. Then, GðxÞ ¼
Pm

j¼1 GjðxÞ reflects the degree of

constraint violation of the individual x.

During the past decade, we have viewed different kinds

of meta-heuristic algorithms advanced to handle constraint

optimization problems (COPs) [1–3]. Among them, meta-

heuristic-based methods, such as genetic algorithm (GA),

particle swarm optimization algorithm (PSO), estimation of

distribution algorithms (EDA), ant colony optimization

X. Li � M. Yin (&)

School of Computer Science and Information Technology,

Northeast Normal University, Changchun 130117, China

e-mail: Minghao.Yin1@gmail.com

123

Neural Comput & Applic (2014) 24:723–734

DOI 10.1007/s00521-012-1285-7



(ACO), simulated annealing (SA), biogeography-based

optimization (BBO), differential evolution (DE), and arti-

ficial bee colony (ABC) [4–12], may be one of the most

popular methods. However, meta-heuristic algorithms

always perform an unconstrained search, Therefore, while

using EAs to solve constrained optimization problem,

constrained handle methods need to add into the algorithm.

Different constrained handle methods include penalty

function, feasible over infeasible solutions, and multiob-

jective optimization method. Penalty function is the most

common constraint handling techniques due to their

simplicity and ease of implementation. The crucial idea

converts the constrain optimization into unconstrained

optimization problem. For feasible over infeasible solution,

this method shows the feasible is better than the infeasible

solution. For multiobjective optimization methods, the

crucial idea of this method is to convert constraint

optimization problem into unconstrained multiobjective

optimization problems. Then, multiobjective optimization

methods are used to handle the converted problem [13, 14].

In this paper, we will use the feasible rule and multi-

objective optimization as the constraint handling method.

Artificial bee colony algorithm [12] (ABC), is a popu-

lation-based heuristic evolutionary algorithm inspired by

the intelligent foraging behavior of the honeybee swarm. In

ABC, a honeybee colony consists of three kinds of bees:

employed bee, onlooker bees, and scout bees. Employed

bees are responsible for exploiting the nectar sources

explored before, sharing their information with onlookers

within the hive. Onlooker bees wait in the hive and decide

on a food source to exploit based on the information shared

by the employed bee colony. Scout bees choose one of the

most inactive solutions and then replace it by a new ran-

domly generated solution. Numerical comparisons show

that the performance of the ABC algorithm is better than

other swarm intelligent algorithms with the advantage of

employing fewer control parameters. ABC is easy to

implement and has been proven to perform well on many

practical optimization problem [15–17]. Since the success

of ABC in many unconstrained optimization problem,

ABC has attracted many researchers to extend it to solve

the constrained optimization. Mezura-Montes et al. [18]

propose a modified artificial bee colony algorithm to solve

constrained numerical optimization problems, some mod-

ifications related with the selection mechanism, the scout

bee operator, and the equality and boundary constraints are

made to the algorithm with the aim to modify the original

algorithm. The results obtained in the experiment showed

that M-ABC is better than the original ABC. Mezura-

Montes et al. [19] propose a novel artificial bee colony

algorithm that enhances the three kinds of bee colony and

uses a dynamic tolerance control method to make the

approach to find the feasible solution. Karaboga and Akay

[20] propose a modified ABC algorithm for constrained

optimization problems. For constraint handling, ABC

algorithm uses Deb’s rules, and a probabilistic selection

scheme is proposed between feasible solutions and infea-

sible solutions. Akay and Karaboga [21] use ABC algo-

rithm to solve large-scale optimization problems and

engineering design problems. For the constrained engi-

neering problem, the basic ABC algorithm was extended

simply by adding a constraint handling technique into the

selection step of the ABC algorithm. Brajevic and Tuba

[22] propose an upgraded artificial bee colony for con-

strained engineering problem. The algorithm improved

fine-tuning characteristics of the modified rate parameter

and employs modified scout bee part.

Recently, Wang et al. [23] propose a hybrid multiswarm

particle swarm optimization for constrained optimization.

At each generation, the swarm is split into several subsw-

arms to taking advantage of PSO as the search algorithm.

Then the differential evolution is as the new update method

to update the personal best solution [23]. For the constraint

handling method, the feasibility rule was used to choose

particles in the population. Inspired by [23], we propose

self-adaptive constrained artificial bee colony (SACABC)

based on feasible rule and multiobjective optimization

problem. The employed bee colony uses the new search

method based on the feasible rule to generate the offspring.

Then, the onlooker bee colony is used to explore the new

search space using the new search method based on mul-

tiobjective optimization problem. Pareto dominance used

in multiobjective optimization is used to compare the

individuals in the population. Effects of the self-adaptive

perturbation rate can control the frequency of parameter

change. 24 benchmark tests chosen from CEC2006 have

been conducted in our experiments. Experimental results

indicate that our approach is effective and efficient.

Compared with other state-of-the-art approach, SACABC

performs better, or at least comparably, in terms of the

quality of the final solutions and the convergence rate.

The rest of this paper is organized as follows: In Sect. 2

we will review the basic artificial bee colony. The problem

method is presented in Sect. 3. Benchmark problems and

the corresponding experimental results are given in Sect. 4.

In the last section we conclude this paper and point out

some future research directions.

2 Artificial bee colony algorithm

Artificial bee colony algorithm is an optimization algo-

rithm inspired by how honeybee swarm finds food. In this

algorithm, the model of the ABC algorithm consists of

three kinds of bees: employed bees, onlooker bees, and

scout bees. Employed bees are responsible for exploiting
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the nectar sources explored before, sharing their informa-

tion with onlookers within the hive. Then, onlooker bees

receive information about the food sources and choose a

food source to exploit depending on the information of

nectar quality. The employee bee becomes scout whose

food source has been abandoned [12]. Also half of the

population is employed bees, and the other half of the

population is onlooker bees in the basic ABC. The Matlab

code of ABC algorithm can be downloaded from http://mf.

erciyes.edu.tr/abc/.

In the initialization phase, it starts by associating all

employed bees with randomly generated food solutions.

The initial population of solutions is filled with SN

number of randomly generated D dimensions. Let Xi ¼
fxi1;xi2; . . .; xiDg represent the ith food source in the pop-

ulation and SN be the number of food source which is

equal to the number of the employed bees or onlooker bees.

The constrained optimization is by the prescribed mini-

mum and maximum bounds

X
!

min ¼ x1;min; x2;min; . . .; xD;min

� �

X
!

max ¼ x1;max; x2;max; . . .; xD;max

� �

Each food source is generated as follows:

xij ¼ xj;min þ ðxj;max � xj;minÞ � r ð2Þ

where i 2 f1; 2; . . .; SNg and j 2 f1; 2; . . .;Dg are ran-

domly chosen indexes, r is a uniform random number in the

range [0,1], and xj;min and xj;max are lower and upper bounds

for the dimension j, respectively.

After initialization, this phase is the employed bees’

phase; an employed bee can change its position xij in its

memory depending on the local information to find a

neighboring food source and evaluates the profitability of

the nectar amount of the new food source vij. If the

employed bee finds a better nectar source, it memorizes the

new nectar source to use it instead of the old one. Then

each employed bee xij generates a new food source vij in

the neighborhood of its present position as follows:

vij ¼ xij þ uijðxij � xkjÞ ð3Þ

where k ¼ intðrand� SNÞ þ 1, uij ¼ ðrand� 0:5Þ � 2 is a

uniformly distributed real random number within the range

½�1; 1�, i 2 f1; 2; . . .; SNg, k 2 f1; 2; . . .; SNg and k 6¼ i,

and j 2 f1; 2; . . .; ng are randomly chosen indexes. After

producing the new solution vi, it will be evaluated and

compared to the xi. If the objective fitness of vi is smaller

than the fitness of xi, vi is accepted as a new basic solution.

Otherwise xi would be obtained. If the generated parameter

value is out of boundaries, it is shifted into the bounties.

When all employed bees finish this process, an onlooker

bee can obtain the information of the food sources from all

employed bees and choose a food source depending on the

probability value associated with the food source, using the

following expression:

pi ¼ 0:9� fitnessi

maxðfitnessiÞ
þ 0:1 ð4Þ

where

fitnessi ¼
1
fi

fi� 0

1þ fij j fi\0

�

ð5Þ

where fitnessi is the fitness value of the solution i.

Obviously, when the maximal value of the food source

decreases, the probability with the preferred source of an

onlooker bee decreases proportionally. The onlooker bee

produces a new source according to Eq. (4). A greedy

selection is applied on the new and original food sources.

In scout bees’ phase, if a position cannot be improved

further through a determined number of the trails ‘‘limit,’’

the food source will be abandoned. Its employed bee will

become a scout and then will discover a food source ran-

domly according to Eq. (2).

These three phases will recycle until the termination con-

dition is met. Then the algorithm outputs the best food source.

3 Proposed method: SACABC

In this section, SACABC is proposed in detail. In order to

further improve the convergence speed and supply more

valuable information to balance the global search capa-

bility and local search capability of the ABC, the employee

bee colony phase is as the global search model based on

the feasible rule. The employed bee colony phase is as

the global search model based on the feasible rule. The

onlooker bee phase is as the local search model based on

multiobjective optimization. The feasible rule is simplicity

and flexibility, which makes the feasible rule can couple to

any sort of selection mechanism. However, they are prone

to cause premature convergence. For multiobjective

optimization, the main idea of this method can convert

constrain optimization to unconstrained multiobjective

optimization. The method can maintain the good infeasible

solution to avoid the algorithm into the optimal solution.

Therefore, in this paper, the algorithm combines two con-

strain methods. In addition, inspired by the differential

evolution algorithm, two new search mechanisms are

proposed to enhance the search ability and maintain

population diversity. In [17], compared with standard

algorithm, modified rate is proposed to make the algorithm

that can change many parameters to improve the conver-

gence rate. Self-adaptive modified rate is used in this paper.

The value of MR can change according to the record of

recent successful update probability and uses them to guide

the generation of new MR.
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The general framework of SACABC is depicted as

follows:

Procedure SACABC

Begin

Generation t = 1;

Initialized with random vector values, and initialize parameters

NP, D;

Evaluate the fitness and the constraint of every individual f ðxiÞ
and GðxiÞ, i = 1,…,NP

and find the best individual with the best objective value

according to the feasible rule. ;

While (stopping criterion is not met)

Use the self-adaptive employ bee colony as the global search
model based on feasible rule

Evaluate the fitness and the constraint for the bee colony

Use the self-adaptive onlooker bee colony as the global
search model based on multiobjective optimization

Update the generation number t = t ? 1

End while

End.

3.1 Employed bee model based on feasible rule

Inspired by the mutation scheme of differential evolution,

in this section, we propose a random search mechanism

to improve the original ABC algorithm. As we know,

differential evolution is an evolutionary algorithm first

introduced by Storn and Price [10]. The crucial idea behind

DE is a scheme for producing trial vectors according to the

manipulation of target vector and difference vector.

Mutation is an operation that adds a vector differential to a

population vector of individuals to generate new trail

vector. Crossover operation is followed, and a new trial

vector is generated. For each part of the trail vector, a

random number is generated; if this is lower than the

crossover CR by the user, then the individual of the

mutation trail vector is used. Different kinds of strategies

of DE have been proposed based on the target vector

selected and the number of difference vectors used. The

following is a mutation strategy frequently used in the

literature:

DE/rand/1:

vi ¼ xa þ Fðxb � xcÞ ð6Þ

where a, b, and c are mutually different random integer

indices selected from {1,…, SN}. F is the scaling factor or

amplification factor, is a positive real number. Based on

DE algorithm and the property of ABC, we propose a novel

search mechanism to improve ABC:

vij ¼ xaj þ uijðxij � xbjÞ
k ¼ intðrand� ðSN� 1ÞÞ þ 1;

ð7Þ

where uij ¼ ðrand� 0:5Þ � 2 is a uniformly distributed

real random number within the range ½�1; 1�, i 2 f1; 2; . . .;

SNg, k 2 f1; 2; . . .; SNg and k 6¼ i, and j 2 f1; 2; . . .; ng are

randomly chosen indexes. The new search method can

drive the new candidate solutions only around the random

solutions of the previous iteration.

Akay and Karaboga [17] propose a modified ABC algo-

rithm by controlling the frequency of perturbation. Inspired

by this improved version, we also use a control parameter,

that is, modification rate (MR), in IABC. In order to produce

a candidate food position vij from the current memorized xij,

MABC algorithm uses the following expression:

vij ¼
xaj þ uijðxij � xbjÞ; if rij�MR

xij otherwise

�

ð8Þ

In order to make the employ bee colony to solve the

constrained optimization problem, feasible rule is incorporated

into the employed bee colony phase. When a solution x1 is

compared to a solution x2, the feasible rule can be described as

follows [24]:

1. If both solutions are feasible, the smaller value x1 is

better than the x2.

2. x1 is feasible, and x2 is infeasible.

3. If both solutions are infeasible, the smaller degree of

constraint violation x1 is better than the x2.

3.2 Onlooker bee search model–based multiobjective

optimization

When all employed bees finish this process, an onlooker

bee can choose a food source depending on the probability

value pi associated with the fitness value, using the

following expression:

pi ¼ 0:9� fitnessi

maxðfitnessiÞ
þ 0:1 ð9Þ

where fitnessi is the fitness value of the solution i. Obvi-

ously, when the maximal value of the food source

decreases, the probability with the preferred source of an

onlooker bee decreases proportionally.

Inspired by the De/current-to-rand/1 mutation scheme of

differential evolution, in this section, we propose another

search mechanism to improve the original onlooker bee

colony phase. The following is a mutation strategy fre-

quently used in the literature:
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DE/current-to-rand/1:

vi ¼ xi þ Fðxi � xaÞ þ Fðxb � xcÞ ð10Þ

where a, b, and c are mutually different random integer

indices selected from {1,…, SN}. F is the scaling factor or

amplification factor, is a positive real number.Based on the

property of two algorithms, we propose a novel search

mechanism to improve ABC:

vij ¼ xaj þ uijðxij � xbjÞ þ uijðxcj � xdjÞ
k ¼ intðrand� ðSN� 1ÞÞ þ 1;

ð11Þ

where uij ¼ ðrand� 0:5Þ � 2 is a uniformly distributed

real random number within the range ½�1; 1�, i 2 f1; 2; . . .;

SNg, k 2 f1; 2; . . .; SNg and k 6¼ i, and j 2 f1; 2; . . .; ng are

randomly chosen indexes. This new search mechanism can

enhance the diversity of the population.The onlooker bee

produces a new source from the old one in memory as

follows:

vij ¼
vij ¼ xajþuijðxij� xbjÞþuijðxcj� xdjÞ; if rij�MR

xij otherwise

�

ð12Þ

where /ij ¼ ðrand� 0:5Þ � 2 is a uniformly distributed

real random number within the range ½�1; 1�, i 2 f1; 2; . . .;

SNg, k 2 f1; 2; . . .; SNg and k 6¼ i, and j 2 f1; 2; . . .; ng are

randomly chosen indexes.

For the constrained optimization, the multiobjective

optimization method is as the constraint handling mecha-

nism. The method converts constrained optimization

problem into two objective problems f~ðxÞ ¼ ðf ðxÞ;GðxÞÞ.
The degree of constraint violation GðxÞ is as the new

objective function. For the constrained optimization prob-

lem with two conflicting objective functions, its any two

solutions have one of two possibilities: One dominates the

other, or none dominates the other. Therefore, Pareto

dominance is very important in multiobjective optimization

problem and is adopted to compare the individuals. In

particular, a feasible solution f~ðx1Þ is said to dominate a

feasible solution f~ðx2Þ, it can be denoted by f~ðx1Þ 	 f~ðx2Þ,
if one of the following two conditions is satisfied:

ð1Þ f ðx1Þ� f ðx2Þ and Gðx1Þ�Gðx2Þ
ð2Þ f ðx1Þ\f ðx2Þ and Gðx1Þ\Gðx2Þ

ð13Þ

And a feasible solution x is also said to be non-

dominated, if there does not exist another x0 such as

f~ðx0Þ 	 f~ðxÞ.

3.3 Self-adaptive modification rate (MR)

In this section, self-adaptive modification rate is proposed

to generate better solutions by the knowledge of their

successful values. The setting of MRi is self-adaptive

performed. At each generation G, the crossover rate MRi of

each individual is independently generated as

MRi ¼ randniðMRm; 0:1Þ ð14Þ

where randniðMRm; 0:1Þ is a random number sampled from

a Gaussian distribution accordingly with mean MRm and

standard deviation 0.1. MRsuccess is the set of all successful

update probabilities at the current generation, and the mean

MRm is initialized to be 0.83 and then updated at the end of

each generation as:

MRm ¼ ð1� dÞ �MRm þ d �meanpowðMRsuccessÞ ð15Þ

where d is a positive constant. The power mean is

calculated as:

meanpowðMRsuccessÞ ¼
X

x2MRsuccess

ðxn= MRsuccessj jÞ1=n ð16Þ

where MRsuccessj j is the cardinality of the set of MRsuccess.

In this paper, n is 1.5 based on the experiment results.

3.4 Boundary constraints

Then, SACABC algorithm assumes that the whole population

should be in an isolated and finite space. However, during the

searching process, if there are some individuals that will move

out of bounds of the space, the original algorithm stops them

on the boundary. In other words, the nest will be assigned a

boundary value. The disadvantage is that if there are too many

individuals on the boundary, and especially when there exists

some local minimum on the boundary, the algorithm will lose

its population diversity to some extent. In order to tackle this

problem, we propose the following repair rule:

xi ¼
minðUi; 2� Li � xiÞ
maxðLi; 2� Ui � xiÞ

(

ð17Þ

4 Experimental results

Numerical simulations were executed based on 24 standards

benchmark functions to evaluate the effectiveness of the

SACABC algorithm. These functions have been widely used

in the literature [25]. The first 13 test functions chose from

[25] are used. Since we do not make any modification in these

functions, they are given in Table 1, and these first 13

problems are described in Appendix. As shown in Table 1, D

is the number of variables of the problem. LI is the number of

linear inequalities. LE denotes the number of linear equali-

ties. NE is the nonlinear equalities. NI is the number of

nonlinear inequality constraints. In Table 1, A is the number

of active constraints. f ðx
Þ is the objective function value of
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the best-known solution. It has been noted that test functions

g02, g03, g08, and g12 are maximization problems. In this

paper, we convert the maximization problems to the mini-

mization problem with �f ðxÞ.
The algorithm is coded in MATLAB 7.0, and experi-

ments are made on a Pentium 3.0 GHz Processor with

1.0 GB of memory.

In order to evaluate the effectiveness and efficiency of

SACABC, we have chosen a suitable set of values and have

not made any effort in finding the better parameter settings.

In this experiment, we set the number of individuals to be

55. (In our algorithm, the scout bee colony phase is not

used.) The tolerance value e for the equality constraints is

set to 0.0001. The number of fitness function evaluations

(FFEs) is equal to 240,000. The maximum number of fit-

ness function evaluations can be considered as a conver-

gence rate. For all test functions, the algorithms carry out

25 independent runs. Each run is terminated only when

the maximum number of generations has been elapsed.

The results of SACABC algorithm are compared with the

results of other methods with respect to the relevant literature

in order to make fair comparison including homomorphous

mapping (HM) method [26], simple multimember evolution

strategy (SMES) [27], genetic algorithm (GA) [27], particle

swarm optimization [28], differential evolution [20], artificial

bee colony algorithm [20], HCOEA [14], ATMES [29], and

M_ABC [18].

4.1 Experimental setup

The statistical results of SACABC using the above

parameter setting are listed in Table 2. Table 2 shows the

known optimal solution for each test function and the best,

mean, worst, and standard deviation of the objective

function values derived from SACABC over 30 indepen-

dent runs. From Table 2, SACABC algorithm is able to

find the global minimum of the 12 problems (g01, g03,

g04, g05, g06, g07, g08, g09, g10, g11, g12, and g13) using

the 240,000 cycles. Then, SACABC was able to find close

results to global optimum for test function g02.

In order to evaluate the effectiveness and efficiency of

SACABC future, the solutions derived from SACABC are

compared with those provided by the HM, SMES, GA,

PSO, DE, and ABC. First, it should be noted that the results

of HM were obtained after 1,400,000, and the results of

PSO algorithm were obtained after 350,000, while those of

DE, GA, ABC, and SMES were obtained after 240,000.

Tables 3 and 4 show the results of the best and mean

solutions of the investigated algorithms. Results of the

HM, SMES, GA, PSO, DE, and ABC are reported in

[20, 27–29]. According to the best solutions in Table 3, it

can be seen that SACABC obtains better solutions than

HM, SMES, GA, PSO, DE, and ABC. Moreover, with

respect to the test functions (g05, g11) with equality con-

strains, objective function values that are better than the

optimal values have been found, it is because equality

constraints are transformed into inequality constraints and

relaxed by using the parameter e. The best results show

the ability of an algorithm to find the optimal result, while

the mean results and standard deviation values show the

robustness of the algorithm. Table 4 shows the mean

results of these algorithms. From Table 4, it can be seen

that the SACABC algorithm reached better or equal mean

results than other algorithms. Therefore, we can find the

SACABC algorithm is more efficient than HM, SMES,

GA, PSO, DE, and ABC.

4.2 Comparison with the HCOEA and ATMES

To verify the effectiveness of the proposed method, we

compare our approach with HCOEA [14] and ATMES

[29]. Wang et al. propose a hybrid constrained optimization

EA (HCOEA), which combines multiobjective optimiza-

tion with global and local search model. In the global

search model, a niching genetic algorithm is proposed. In

the local search model, a clustering partition of the popu-

lation and multiparent crossover is proposed. ATMES,

which combines simple evolutionary strategy (ES) and

adaptive trade-off model, is proposed for constrained

evolutionary optimization. The experimental results are

listed in Tables 5 and 6. It is proven that HCOEA and

ATMES give very high-quality results for 13 benchmark

test function. In Tables 5 and 6, the better results between

two algorithms are highlighted using boldface. The FEEs

of all algorithms is 240,000; the results are restricted to the

Table 1 Benchmark problems

Problem D Type of

prob

LI NI LE NE A Optimal

g01 13 Quadratic 9 0 0 0 6 -15.000

g02 20 Nonlinear 1 1 0 0 1 -0.803619

g03 10 Nonlinear 0 0 0 1 1 -1.000

g04 5 Quadratic 0 6 0 0 2 -30,665.539

g05 4 Nonlinear 2 0 0 3 3 5,126.498

g06 2 Nonlinear 0 2 0 0 2 -6,961.814

g07 10 Quadratic 3 5 0 0 6 24.306

g08 2 Nonlinear 0 2 0 0 0 -0.095825

g09 7 Nonlinear 0 4 0 0 2 680.63

g11 2 Quadratic 0 0 0 1 1 0.75

g12 3 Quadratic 0 93 0 0 0 -1.000

g13 5 Nonlinear 0 0 1 2 3 0.053950

D dimension of the problem, LI linear inequality, NI nonlinear

inequality, NE nonlinear quality; a more detailed description of these

functions can be found in the literature
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first thirteen test problems due to the fact that no results

were found for the rest of them.

Compared with ATMES, the statistical values in

Table 5 indicate that SACABC has the similar ‘‘best,’’

‘‘mean,’’ and ‘‘worst’’ results for 11 test functions (g01,

g03, g04, g05, g06, g08, g11, and g12). For test function

g07, g09, and g10, SACABC can obtain the better ‘‘best,’’

‘‘mean,’’ and ‘‘worst’’ results. As can be seen in Table 5,

SACABC can find better ‘‘best’’ and ‘‘worst’’ results for

g02. The ‘‘mean’’ of the function g02 is obtained by the

ATMES. For the function g13, both algorithms can find the

‘‘best’’ value. However, the ‘‘mean’’ and ‘‘worst’’ values

are obtained by the ATMES.

Compared with HCOEA, SACABC finds similar

‘‘best,’’ ‘‘mean,’’ and ‘‘worst’’ results for 11 test functions

(g01, g04, g05, g06, g08, g09, g11, and g12). For test

function g02, better ‘‘mean’’ and ‘‘worst’’ results are found

by HCOEA. SACABC surpasses HCOEA for test function

g03 (except the ‘‘worst’’ value), g05, g07, and g11 in terms

of all performance metrics. HCOEA can obtain better

solution than the SACABC for the test function g13.

Based on the above results, SACBAC shows a very

competitive performance with that of AIMES and HCOEA

which are the state-of-the-art methods in the filed of con-

strained optimization problem.

4.3 Comparison with M-ABC

In order to evaluate the effectiveness of the proposed

algorithm further, we compare our results with the M-ABC

Table 2 Statistical results obtained by SACABC algorithm for 13 test functions over 30 independent runs using 240,000

Problem Optimal Best Mean Worst Std

g01 -15.000 -15.000 -15.000 -15.000 0

g02 -0.803619 -0.803618 -0.7886 -0.7688 0.0141

g03 -1.000 -1.0005 -1.0004 -0.9997 2.55086e-004

g04 -30,665.539 -30,665.539 -30,665.539 -30,665.539 0

g05 5,126.498 5,126.497 5,126.497 5,126.497 9.5869e-013

g06 -6,961.814 -6,961.814 -6,961.814 -6,961.814 1.9174e-012

g07 24.306 24.3062 24.3062 24.3064 2.5434e-007

g08 -0.095825 -0.095825 -0.095825 -0.095825 1.4628e-017

g09 680.63 680.630 680.630 680.630 1.1984e-013

g10 7,049.248 7,049.248 7,049.248 7,049.248 3.0316e-013

g11 0.75 0.7499 0.7499 0.7499 1.1702e-016

g12 -1.000 -1.000 -1.000 -1.000 0

g13 0.05394 0.05394 0.09242 0.438802 0.1217

Table 3 The best solution obtained by the HM, GA, SMES, PSO, DE, ABC, and SACABC algorithm for 13 test functions over 30 independent

runs

Problem Optimal HM [17] GA [18] SMES [18] PSO [19] DE [20] ABC [21] SACABC

g01 -15.000 -14.7864 -14.440 -15.000 -15.000 -15.000 -15.000 -15.000

g02 -0.803619 -0.79953 -0.796231 -0.803601 -0.6699159 -0.472 -0.803598 -0.803618

g03 -1.000 -0.9997 -0.990 -1.000 -0.993930 -1.000 -1.000 -1.0005

g04 -30,665.539 -30,664.5 -30,626.053 -30,665.539 -30,665.539 -30,665.539 -30,665.539 -30,665.539

g05 5,126.498 – – 5,126.599 5,126.484 5,126.484 5,126.484 5,126.497

g06 -6,961.814 -6,952.1 -6,952.472 -6,961.814 -6,161.814 -6,954.434 -6,961.814 -6,961.814

g07 24.306 24.620 31.097 24.327 24.370153 24.306 24.330 24.3062

g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825

g09 680.63 680.91 685.994 680.632 680.630 680.630 680.634 680.630

g10 7,049.25 7,147.9 9,079.770 7,051.903 7,049.381 7,049.248 7.53.904 7,049.248

g11 0.75 0.75 0.750 0.75 0.749 0.752 0.750 0.7499

g12 -1.000 NA -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

g13 0.053950 NA 0.134057 0.053986 0.085655 0.385 0.760 0.05394

The bold values represent the best value

(-) means that no feasible solutions were found. NA not available
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algorithm [18]. 24 benchmark test functions in the

CEC2006 are used, which includes 13 benchmark test

function in the previous experiments. For M-ABC

algorithm, four modifications related with the selection

mechanism, the scout bee operator, and the equality and

boundary constrains are made to the algorithm with the aim

of modifying the behavior in a search space. In our

experiments, the parameter setting is the same as the pre-

vious one. The best, mean, and worst of the objective value

for 30 runs are reported in Table 7. For the function g20

and g22, the M-ABC cannot find the feasible solutions in

any runs. Our algorithm cannot find the feasible solution.

For the functions g01, g04, g06, g08, g11, g12, g16, and

g24, M-ABC and SACABC obtained the same statistical

values. For the function g02, the best value can be found by

SACABC, but the mean and worst values of the function

are obtained by the M-ABC. For the function g03,

SACABC gives the best and mean value. M-ABC gives the

best ‘‘Worst’’ value. SACABC provided a ‘‘better’’ best,

mean, and ‘‘worst’’ value with respect to M_ABC in test

functions g05, g07, g09, g10, g13, g14, g15, g17, g18, g19,

g21, and g23. The overall results show that SACABC has

the ability to provide high-quality solutions with respect to

the M-ABC in most of the test functions in this paper.

Table 4 The mean solution obtained by the HM, GA, SMES, PSO, DE, ABC, and SACABC algorithm for 13 test functions over 30 independent

runs

Problem Optimal HM [17] GA [18] SMES [18] PSO [19] DE [20] ABC [21] SACABC

g01 -15.000 -14.7082 -14.236 -15.000 -14.710 -14.555 -15.000 -15.000

g02 -0.803619 -0.79671 -0.788588 -0.785238 -0.419960 -0.665 -0.792412 -0.7886

g03 -1.000 -0.9989 -0.976 -1.000 -0.764813 -1.000 -1.000 -1.0004

g04 -30,665.539 -30,655.3 -30,590.455 -30,665.539 -30,665.539 -30,665.539 -30,665.539 -30,665.539

g05 5,126.498 5,126.498 - 5,174.492 5,135.973 5,264.270 5,185.714 5,126.497

g06 -6,961.814 -6,961.814 -6,872.204 -6,961.284 -6,961.814 - -6,961.813 -6,961.814

g07 24.306 24.826 34.980 24.475 32.407 24.310 24.473 24.3062

g08 -0.095825 -0.0891568 -0.095799 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825

g09 680.63 681.16 692.064 680.643 680.630 680.630 680.640 680.630

g10 7,049.25 8,163.6 10,003.225 7,253.047 7,205.5 7,147.334 7,224.407 7,049.248

g11 0.75 0.75 0.75 0.75 0.749 0.901 0.750 0.7499

g12 -1.000 NA -1.000 -1.000 -0.998875 -1.000 -1.000 -1.000

g13 0.053950 NA - 0.166385 0.569358 0.872 0.968 0.09242

The bold values represent the best value

(-) means that no feasible solutions were found. NA not available

Table 5 Comparing SACABC with respect to ATMES on 13 benchmark test functions

Function Optimal Best result Mean result Worst result

SACABC ATMES SACABC ATMES SACABC ATMES

g01 -15.000 -15.000 -15.000 215.000 -15.000 -15.000 -15.000

g02 -0.803619 -0.803618 -0.803388 -0.7886 -0.790148 -0.7688 -0.756986

g03 -1.000 -1.0005 -1.000 -1.0004 -1.000 -0.9997 -1.000

g04 -30,665.539 -30,665.539 -30,665.539 -30,665.539 -30,665.539 -30,665.539 -30,665.539

g05 5,126.498 5,126.497 5,126.498 5,126.497 5,127.648 5,126.497 5,135.256

g06 -6,961.814 -6,961.814 -6,961.814 -6,961.814 -6,961.814 -6,961.814 -6,961.814

g07 24.306 24.3062 24.306 24.3062 24.316 24.3064 24.359

g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825

g09 680.63 680.630 680.630 680.630 680.639 680.630 680.673

g10 7,049.25 7,049.248 7,052.253 7,049.248 7,250.437 7,049.248 7,560.224

g11 0.75 0.7499 0.75 0.7499 0.75 0.7499 0.75

g12 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -0.994

g13 0.053950 0.05394 0.05394 0.09242 0.053959 0.438802 0.053999
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Table 6 Comparing SACABC with respect to HCOEA on 12 benchmark test functions

Function Optimal Best result Mean result Worst result

SACABC HCOEA SACABC HCOEA SACABC HCOEA

g01 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000

g02 -0.803619 -0.803618 -0.803241 -0.7886 -0.801258 -0.7688 -0.792363

g03 -1.000 -1.0005 -1.000 -1.0004 -1.000 -0.9997 -1.000

g04 -30,665.539 -30,665.539 -30,665.539 -30,665.539 -30,665.539 -30,665.539 -30,665.539

g05 5,126.498 5,126.497 5,126.498 5,126.497 5,126.498 5,126.497 5,126.498

g06 -6,961.814 -6,961.814 -6,961.814 -6,961.814 -6,961.814 -6,961.814 -6,961.814

g07 24.306 24.3062 24.306 24.3062 24.307 24.3064 24.309

g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825

g09 680.63 680.630 680.630 680.630 680.630 680.630 680.630

g10 7,049.25 7,049.248 7,049.287 7,049.248 7,049.525 7,049.248 7.49.984

g11 0.75 0.7499 0.750 0.7499 0.750 0.7499 0.750

g12 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

g13 0.053950 0.05394 0.0539498 0.09242 0.0539498 0.438802 0.0539498

Table 7 Comparing SACABC with respect to M-ABC on 24 benchmark test functions

Function Optimal Best result Mean result Worst result

SACABC M-ABC SACABC M-ABC SACABC M-ABC

g01 -15.000 -15.000 -15 -15.000 -15 -15.000 -15

g02 -0.803619 -0.803618 -0.83615 -0.7886 -0.799336 -0.7688 -0.777438

g03 -1.000 -1.0005 -1.000 -1.0004 -1.000 -0.9997 -1.000

g04 -30,665.539 -30,665.539 -30,665.539 -30,665.539 -30,665.539 -30,665.539 -30,665.539

g05 5,126.498 5,126.497 5,126.736 5,126.497 5,178.139 5,126.497 5,317.196

g06 -6,961.814 -6,961.814 -6,961.814 -6,961.814 -6,961.814 -6,961.814 -6,961.814

g07 24.306 24.3062 24.315 24.3062 24.315 24.3064 24.854

g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825

g09 680.63 680.630 680.632 680.630 680.647 680.630 680.691

g10 7,049.25 7,049.248 7,051.706 7,049.248 7,233.882 7,049.248 7,473.109

g11 0.75 0.7499 0.75 0.7499 0.75 0.7499 0.75

g12 -1.000 -1.000 -1.00 -1.000 -1.000 -1.000 -1.000

g13 0.053950 0.05394 0.053985 0.09242 0.158552 0.438802 0.442905

g14 -47.765 -47.7648 -47.641 -47.7648 -47.641 -47.7648 -46.537

g15 961.715 961.715 961.715 961.715 961.715 961.715 961.793

g16 -1.905 -1.905 -1.905 -1.905 -1.905 -1.905 -1.905

g17 8,853.540 8,853.534 8,866.618 8,853.631 8,987.459 8,854.504 9,165.219

g18 -0.866025 -0.866025 -0.866606 -0.866025 -0.7950187 -0.866025 -0.672216

g19 32.656 32.6556 33.285 32.6560 34.267 32.6597 35.746

g20 0.096700 – – – – – –

g21 193.725 193.725 266.500 233.0180 306.609 324.702 329.960

g22 236.431 – – – – – –

g23 -400.055 -400.055 -159.739 -400.055 -35.272 -400.055 109.010

g24 -5.508 -5.508 -5.508 -5.508 -5.508 -5.508 -5.508

The bold values represent the best value
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5 Conclusions

In this paper, we propose a constrained version of self-

adaptive constrained artificial bee colony algorithm

(SACABC) to solve the constraint optimization problems.

The employed bee colony phase is as the global search

model based on the feasible rule. The onlooker bee phase is

as the local search model based on multiobjective optimi-

zation. Self-adaptive modification rate is proposed to make

the algorithm that can change many parameters to improve

the convergence rate. The value of MR can change

according to the record of recent successful update prob-

ability and use them to guide the generation of new MR.

The proposed SACABC and some state-of-the-art methods

experiment on 24 benchmark test functions. Numerical

simulations show that the proposed algorithm can obtain

results better than the ones reported in the literature. It has

been concluded that SACABC algorithm can be efficiently

used for solving these problems due to its simplicity,

reliability, and robustness.
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Appendix

g01:

Minimize f ðxÞ ¼ 5
X4

i¼1

xi � 5
X4

i¼1

x2
i �

X13

i¼5

xi

subject to

g1ðxÞ ¼ 2x1 þ 2x2 þ x10 þ x11 � 10� 0

g2ðxÞ ¼ 2x1 þ 2x3 þ x10 þ x12 � 10� 0

g3ðxÞ ¼ 2x2 þ 2x3 þ x11 þ x12 � 10� 0

g4ðxÞ ¼ �8x1 þ x10� 0

g5ðxÞ ¼ �8x2 þ x11� 0

g6ðxÞ ¼ �8x3 þ x12� 0

g7ðxÞ ¼ �2x4 � x5 þ x10� 0

g8ðxÞ ¼ �2x6 � x7 þ x11� 0

g9ðxÞ ¼ �2x8 � x9 þ x12� 0

where bounds are 0� xi� 1 (i ¼ 1; . . .; 9; 13), 0� xi� 100

(i = 10, 11, 12). The global optimum is at x
 ¼ ð1; 1; 1;
1; 1; 1; 1; 1; 1; 3; 3; 3; 1Þ, f ðx
Þ ¼ �15.

g02:

Maximize f ðxÞ ¼ �
Pn

i¼1 cos4ðxiÞ � 2
Qn

i¼1 cos2ðxiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ix2
i

p

�
�
�
�
�

�
�
�
�
�

Subject to

g1ðxÞ ¼ 0:75�
Yn

i¼1

xi� 0

g2ðxÞ ¼
Xn

i¼1

xi � 7:5n� 0

where n = 20 and 0� xi� 10 (i ¼ 1; . . .; n). The known

global maximum is at x
 ¼ 1=
ffiffiffi
n
p

(i ¼ 1; . . .; n), f ðx
Þ ¼
0:803619. g1 is close to being active (g1 = -10-8).

g03:

Maximize f ðxÞ ¼ ð
ffiffiffi
n
p
Þn
Yn

i¼1

xi

Subject to

hðxÞ ¼
Xn

i¼1

x2
i � 1 ¼ 0

where n = 10 and 0� xi� 1 (i ¼ 1; . . .; n), the global

maximum is at x
 ¼ 1=
ffiffiffi
n
p

(i ¼ 1; . . .; n) where f ðx
Þ ¼ 1.

g04:

Minimize f ðxÞ ¼ 5:3578547x2
3 þ 0:8356891x1x5

þ 37:293239x1 � 40; 792:141

Subject to

g1ðxÞ ¼ 85:334407þ 0:0056858x2x5 þ 0:0006262x1x4

� 0:0022053x3x5 � 92� 0

g2ðxÞ ¼ �85:334407� 0:0056858x2x5 � 0:0006262x1x4

þ 0:0022053x3x5� 0

g3ðxÞ ¼ 80:51249þ 0:0071317x2x5 þ 0:0029955x1x2

þ 0:0021813x2
3 � 110� 0

g4ðxÞ ¼ �80:51249� 0:0071317x2x5 � 0:0029955x1x2

þ 0:0021813x2
3 þ 90� 0

g5ðxÞ ¼ 9:300961þ 0:004702x3x5 þ 0:0012547x1x3

þ 0:0019085x3x4 � 25� 0

g6ðxÞ ¼ �9:300961� 0:004702x3x5 � 0:0012547x1x3

� 0:0019085x3x4 þ 20� 0

where 78� x1� 102, 33� x2� 45, 27� xi� 45 (i ¼
3; 4; 5). The optimum solution is x
 ¼ ð78; 33; 29:995

256025682; 45; 36; 7758129005788Þ, where f ðx
Þ ¼ �30;

665:539.
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g05:

Minimize

f ðxÞ ¼ 3x1 þ 0:000001x3
1 þ 2x2 þ

0:000002

3

	 


x3
2

Subject to

g1ðxÞ ¼ �x4 þ x3 � 0:55� 0

g2ðxÞ ¼ �x3 þ x4 � 0:55� 0

h1ðxÞ ¼ 1; 000 sinð�x3 � 0:25Þ þ 1; 000 sinð�x4 � 025Þ
þ 894:8� x1 ¼ 0

h2ðxÞ ¼ 1; 000 sinðx3 � 0:25Þ þ 1; 000 sinðx3 � x4 � 025Þ
þ 894:8� x2 ¼ 0

h3ðxÞ ¼ 1; 000 sinðx4 � 0:25Þ þ 1; 000 sinðx4 � x3 � 025Þ
þ 1; 294:8 ¼ 0

where 0� x1� 1; 200, 0� x2� 1; 200, �0:55� x3� 0:55,

and �0:55� x4� 0:55. The best-known solution is x


¼ ð679:9453; 1; 026:067; 0:1188764;�0:3962336Þ, where

f ðx
Þ ¼ 5; 126:498:

g06:

Minimize f ðxÞ ¼ ðx1 � 10Þ3 þ ðx2 � 20Þ3

Subject to

g1ðxÞ ¼ �ðx1 � 5Þ2 � ðx2 � 5Þ2 þ 100� 0

g2ðxÞ ¼ ðx1 � 6Þ2 � ðx2 � 5Þ2 � 82:81� 0

where 13� x1� 100 and 0� x2� 100. The optimum solution

is x
 ¼ ð14:095; 0:84296Þ where f ðx
Þ ¼ �6; 961:81388.

g07:

Minimize

f ðxÞ ¼ x2
1 þ x2

2 þ x1x2 � 14x1 � 16x2 þ ðx3 � 10Þ2

þ 4ðx4 � 5Þ2 þ ðx5 � 3Þ2 þ 2ðx6 � 1Þ2 þ 5x2
7

þ 7ðx8 � 11Þ2 þ 2ðx9 � 10Þ2 þ ðx10 � 7Þ2 þ 45

Subject to

g1ðxÞ ¼ �105þ 4x1 þ 5x2 � 3x7 þ 9x8� 0

g2ðxÞ ¼ 10x1 � 8x2 � 17x7 þ 2x8� 0

g3ðxÞ ¼ �8x1 þ 2x2 þ 5x9 � 2x10 � 12� 0

g4ðxÞ ¼ 3x2
1 þ 4ðx2 � 3Þ2 þ 2x2

3 � 7x4 � 120� 0

g5ðxÞ ¼ 5ðx1 � 2Þ2 þ 8x2 þ ðx3 � 6Þ2 � 2x4 � 40� 0

g6ðxÞ ¼ x2
1 þ 2ðx2 � 2Þ2 � 2x1x2 þ 14x5 � 6x6� 0

g7ðxÞ ¼ 0:5ðx1 � 8Þ2 þ 2ðx2 � 4Þ2 þ 3x2
5 � x6 � 30� 0

g8ðxÞ ¼ �3x1 þ 6x2 þ 12ðx9 � 8Þ2 � 7x10� 0

where�10� x1� 10 (i ¼ 1; . . .; 10). The global optimum is

x
¼ð2:171996;2:363683; 8:773926; 5:095984; 0:9906548;

1:430574; 1:321644; 9:828726; 8:280092;8:375927Þ;where

f ðx
Þ¼24:3062091.

g08:

Minimize f ðxÞ ¼ sin3ð2px1Þ sinð2px2Þ
x3

1ðx1 þ x2Þ

Subject to

g1ðxÞ ¼ x2
1 � x2 þ 1� 0

g2ðxÞ ¼ 1� x1 þ ðx2 � 4Þ2� 0

where 0� x1� 10 (i ¼ 1; 2). The optimum solution is

located at x
 ¼ ð1:2279713; 4:2453733Þ; where f ðx
Þ ¼
0:0095825.

g09:

Minimize

f ðxÞ ¼ ðx1 � 10Þ2 þ 5ðx2 � 12Þ2 þ x4
3 þ 3ðx4 � 11Þ2

þ10x6
5 þ 7x2

6 þ x4
7 � 4x6x7 � 10x6 � 8x7

Subject to

g1ðxÞ ¼ �127þ 2x2
1 þ 3x4

2 þ x3 þ 4x2
4 þ 5x5� 0

g2ðxÞ ¼ �282þ 7x1 þ 3x2 þ 10x3
2 þ x4 � x5� 0

g3ðxÞ ¼ �196þ 23x1 þ x2
2 þ 6x2

6 � 8x7� 0

g4ðxÞ ¼ 4x2
1 þ x2

2 � 3x1x2 þ 2x2
3 þ 5x6 � 11x7� 0

where �10� x1� 10, i ¼ 1; . . .; 7. The global optimum is

x
 ¼ ð2:330499; 1:951372;�0:4775414;

4:365726;�0:6244870; 1:038131; 1:594227Þ; where

f ðx
Þ ¼ 680:6300573.

g11:

Minimize f ðxÞ ¼ x2
1 þ ðx2 � 1Þ2

Subject to

hðxÞ ¼ x2 � x2
1 ¼ 0

where �1� x1� 1, �1� x1� 1. The optimum solution is

x
 ¼ ð�1=
ffiffiffiffiffiffiffi

ð2Þ
p

; 1=2Þ; where f ðx
Þ ¼ 0:75.

g12:

Minimize

f ðxÞ ¼ 100� ðx1 � 5Þ2 � ðx2 � 5Þ2 � ðx3 � 5Þ2

100

Subject to

g1ðxÞ ¼ ðxi � pÞ2 þ ðx2 � qÞ2 þ ðx3 � rÞ2 � 0:0625� 0

where 0� x1� 10 (i ¼ 1; 2; 3) and p; q; r ¼ 1; . . .; 9.

The global optimum is located at x
 ¼ ð5; 5; 5Þ; where

f ðx
Þ ¼ 1.
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g13:

Minimize f ðxÞ ¼ ex1x2x3x4x5

Subject to

h1ðxÞ ¼ x2
1 þ x2

2 þ x2
3 þ x2

4 þ x2
5 ¼ 0

h2ðxÞ ¼ x2x3 � 5x4x5 ¼ 0

h3ðxÞ ¼ x3
1 þ x3

2 þ 1 ¼ 0

where�2:3� x1� 2:3, i ¼ 1; 2,�3:2� x1� 3:2, i ¼ 3; 4; 5.

The global optimum is x
 ¼ ð�1:717143; 1:5957091; 1:82

72;�0:736413;�0:763645Þ; where f ðx
Þ ¼ 0:0539498.
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