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The development of large scale distributed sensor systems is a significant sci-
entific and engineering challenge, but they show great promise for a wide range
of applications. The capability to sense and integrate spatial information with
other elements of a sensor application is critical to exploring the full potential of
these systems. In this article we discuss the range of application requirements,
introduce a taxonomy of localization mechanisms, and briefly discuss the cur-
rent state of the art in ranging and positioning technologies. We then introduce
two case studies that illustrate the range of localization applications.

The development of large scale distributed sensor systems is a significant
scientific and engineering challenge, but they show great promise for a wide
range of applications. By placing sensors close to the phenomena they sense,
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these systems can yield increased signal quality, or equivalent signal quality at
reduced cost. By reducing deployment overhead, whether in terms of unit cost
or installation time, they enable the sensors to be placed in greater numbers.

Relative to other types of distributed systems, distributed sensor systems
introduce an interesting new twist: they are coupled to the physical world, and
their spatial relationship to other objects in the world is typically an important
factor in the task they perform. The term localization refers to the collection
of techniques and mechanisms that measure these spatial relationships.

When raw sensor data is combined with spatial information, the value of the
data and the capability of the system that collects it increases substantially. For
example, a collection of temperature readings without location information is
at best only useful to compute simple statistics such as the average temperature.
At worst, analysis of the data might yield incorrect conclusions if inaccurate
assumptions are made about the distribution of physical sampling. By com-
bining the data with location information, the resulting temperature map can
be analyzed much more effectively. For instance, statistics can be computed
in terms of spatial sampling rather than the count of sensor readings, and the
confidence of the results can be assessed more meaningfully. Location also
opens up entirely new application possibilities: a model for heat transfer can
be applied to filter out noise and pinpoint the location of heat sources.

This simple example is intended to illustrate a more general point. As any-
one who has worked with distributed sensor systems is painfully aware, there
is a high cost in moving from a centralized, wired application to a large-scale,
distributed, wireless application. The application is certain to grow in com-
plexity; new techniques must be developed, new protocols deployed, and the
application must be resilient to the whims of nature. In addition, there are
the more mundane details of dealing with large numbers of independent parts,
each of which needs the right software version and fresh batteries, and each of
which can independently fail. But what makes all of this effort worthwhile is
the ability to deploy applications that collect data that could never be collected
before, and for this we need localization.

In this article, we will first present a range of application requirements in
Section 15.2. In Section 15.3, we will introduce a taxonomy of localization
mechanisms to satisfy those requirements. In Section 15.4, we will summarize
the state of the art in available ranging and positioning technologies. Section
15.5 discusses node localization in multihop networks and section 15.6 exam-
ines how error behaves with respect to different network parameters. Section
15.7 concludes the chapter with a description of an example ad-hoc localiza-
tion system.
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Scientists in numerous disciplines are interested in methods for tracking the
movements and population counts of animals in their natural habitat. While
there are various techniques currently employed (e.g. rings on birds’ claws,
“drop buckets” for small animals on the ground), these techniques do not scale
well in terms of the time required of experimenters. One of the open challenges
in this field is to develop an automated system that can build a record of the
passage and habits of a particular species of animal, without disturbing it in its
natural habitat.

One possible solution might be built around a passive source localization
and species identification system. Such a system would detect and count an-
imals by localizing the sounds they make, then training a camera system on
them to aid in counting.

Sensor nodes equipped with microphones would be distributed through the
target environment. When an acoustic source is detected by a node, it com-
municates with nearby nodes to try to estimate the location of the source by
comparing the times of arrival of the signals. Analysis techniques such as
beam-forming [19] might apply to this application, along with species recog-
nition techniques to filter out acoustic sources not relevant to the task.

From this application we can derive a number of requirements:
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15.2 APPLICATION REQUIREMENTS

The field of networked sensor systems encompasses a very broad array of
applications, with a broad range of requirements. Often different application
requirements can motivate very different systems. While these differences are
sometimes tunable parameters, often they are significant structural choices.
For example, adding a low-power requirement rules out many possible designs
from the start.

To introduce this variety, we first present two points in the application space,
and then enumerate a set of requirements axes that characterize the require-
ments space of localization systems.

15.2.1 PASSIVE HABITAT MONITORING

Outdoor Operation. The system must be able to operate outdoors, in
various weather conditions.

Power Efficiency. Power may be limited, whether by battery lifetime or
by the feasibility of providing sufficient solar collectors.

Non-cooperative Target, Passive Infrastructure. The animal does not
emit signals designed to be detected by the system (i.e. non-cooperative),
and the system does not emit signals to aid in localization.



Accuracy. The system must be accurate enough to be able to produce a
reliable count, and to accurately focus a camera on suspected locations.

Availability of Infrastructure. In some cases GPS may be available to
localize the sensors themselves. However, in many cases sensors will
need to be placed under canopies where GPS signals are unavailable.
In these cases, if surveying the sensors is inconvenient, the sensors will
need to self-localize. The self-localization system may have a different
set of requirements.
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15.2.2 SMART ENVIRONMENTS

Smart environments are a second class of applications where location aware-
ness is a key component. Smart environments are deeply instrumented systems
with very demanding localization requirements. These systems need localiza-
tion for two different purposes. First, rapid installation and self-configuration
of a set of infrastructure “beacons” is required to reduce installation cost and
increase flexibility. Second, very fine-grained localization and tracking of the
system components is required during normal system operation.

The operation requirements can also be assessed along similar axes:

Indoor Operation. The system must operate indoors. While the weather
indoors is generally predictable, there are typically many reflectors that
cause multipath interference for both RF and acoustic signals. If the en-
vironment is an office environment, acoustic signals should be outside
of the range of human hearing. The system will need to operate in the
presence of obstacles.

Power Requirements. Some of the infrastructure components may be
close to power sources, but a large number of the system components
should be untethered and free to move around the space. This implies
that the majority of the system components should be as low power as
possible.

Cooperative Target, Active Infrastructure. Because the target badge
localizes itself relative to the beacons and reports its location, we con-
sider it to be cooperative. The beacon infrastructure is active because it
emits periodic signals that the badge receives.

Accuracy. Fine-grained localization of people and objects with 10cm
accuracy may be required by many systems.

Availability of Infrastructure. Infrastructure may be present, but in-
frastructure installation usually becomes a dominant cost factor. Ideally
the infrastructure should be self-configuring in a way that reduces instal-
lation cost.



Granularity and Scale of Measurements. What is the smallest and
largest measurable distances? For instance, local coordinate systems for
a sensor network might scale from centimeters to hundreds of meters,
whereas GPS coordinates have a global scale and a granularity on the
order of meters.

Accuracy and Precision. How close is the answer to ground truth (ac-
curacy), and how consistent are the answers (precision)?

Relation to Established Coordinate System. Are absolute positions
needed, or is a relative coordinate system sufficient? Do locations need
to be related to a global coordinate system such as GPS, or an application
specific coordinate system such as a forest topography or building floor-
plan?

Dynamics. Are the elements being localized fixed in place or mobile?
Can a static infrastructure be assumed? What refresh rate is needed? Is
motion estimation required?

Cost. Node hardware cost, in terms of both power consumption and
monetary cost; Latency of localization mechanism; Cost of installing
infrastructure (if needed), in terms of power, money, and labor.

Form Factor. How large can a node be? If the node has multiple sensors
separated by a baseline, what kind of baseline is required for sensors to
work effectively?

Communications Requirements. What kind of coordination is required
among nodes? What assumptions does the system make about being able
to send or receive messages at any time? What kind of time synchroniza-
tion is needed? Does the algorithm rely on the existence of a cluster head
or a “microserver”?

Environment. How sensitive is a given technique to environmental in-
fluences, and in what range of environments does it work? For instance,
indoors (multipath), outdoors (weather variations), underwater, or on
Mars?

Target Cooperation, System Passivity. Does the target play a coopera-
tive role in the system? Can the system emit signals into the environment
without interfering with the task at hand?
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15.2.3 AXES OF APPLICATION REQUIREMENTS

These points in the application space demonstrate a broad spectrum of re-
quirements that seem to fall along nine independent axes:



Returning to our examples of the previous section, we can motivate a taxon-
omy by summarizing their important structural features. Perhaps the distinc-
tion that stands out the most among our example applications has to do with
“cooperative” targets. In the case of an animal localizer, we can’t assume that
the animal is acting with the intent of being localized. In fact, under some cir-
cumstances, targets may intentionally avoid detection. This property is in sharp
contrast with the case of locating badges. While a small child might attempt
to subvert the localization system, we can assume that the badges themselves
will be cooperative in whatever ways will simplify the implementation of the
system.

This distinction has numerous repercussions on the overall design of the sys-
tem. First, while in the non-cooperative case the animal detector must be con-
stantly vigilant, at considerable energy cost, the cooperative smart badge can
take advantage of a simple mechanical motion detector (e.g. a jiggle switch)
to implement a simple zero-power wakeup mechanism.

Second, while the characteristic sounds of animal calls and motions may be
detectable, the detection process is more complex, and ultimately more failure-
prone than the detection of a synthetic ranging signal. Not only will the pro-
cessing be more expensive, both in terms of processing and communications
costs, the false positive rate will tend to be higher. In contrast, a cooperative
system has the luxury of designing its signals to be detected efficiently and
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Given such a complex requirement space, it seems that few system designs,
techniques or technologies will fit that space uniformly. This complicates ef-
forts to develop reusable designs and components, especially in the early stages
of a research program where the canonical applications are not well under-
stood. It also means that the importance of a new technique or system must
be evaluated in an appropriate context. In order to equitably compare differ-
ent mechanisms and systems, we need a taxonomy of mechanisms and system
structures to provide context for our comparisons.

15.3 TAXONOMY OF LOCALIZATION
MECHANISMS

The capsular conclusion of the last section was simple: localization systems
will differ not only in details of algorithms and protocols, but also fundamen-
tally in the structure of their system and in the assumptions they make. The
challenge of this section is therefore to construct a taxonomy of general sys-
tem structures that capture the breadth and depth of the solution space. Having
done this, hopefully we can better classify localization systems and compo-
nents for the purposes of comparison and contrast.

15.3.1 CLASSIFYING OUR EXAMPLES



accurately, e.g. low-autocorrelation codes and a simple matched filter detector
at each receiver.

Third, a non-cooperative system can only use Time Difference of Arrival
(TDoA) techniques to estimate position, because the true time of the signal
emission is not known. In contrast, a cooperative system can sometimes use an
out-of-band synchronization protocol to establish a consistent timebase, and
then provide receivers with the send time so that they can measure Time of
Flight (ToF).

These differences result in important structural differences among our ex-
ample systems. We place the habitat monitoring application in the “Passive
Target Localization” category. The smart environment application can be bro-
ken into two phases, that fall into different categories: a “bootstrapping” phase
in which the infrastructure of beacons self-organizes into a coordinate system,
and a “service” phase in which the badges localize themselves with respect to
the beacon infrastructure. The bootstrapping phase fits into the “Cooperative
Target” category, while the service phase fits into “Cooperative Infrastructure”.
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15.3.2 A TAXONOMY OF LOCALIZATION SYSTEMS

We have discussed examples representing three categories of localization
system. Extending this process, we can identify six categories of localization
system, that appear to cover all the systems of which we are currently aware.
These six categories are partitioned into “active” and “passive”.

Active Localization. Active localization techniques emit signals into the
environment that are used to measure range to the target. These signals may
be emitted by infrastructure components or by targets. Within the category of
active localization there are three subcategories:

Non-cooperative. In an active, non-cooperative system, system ele-
ments emit ranging signals, which are distorted or reflected in flight by
passive elements. The system elements then receive the signals and an-
alyze them to deduce their location relative to passive elements of the
environment. Examples include radar systems and reflective sonar sys-
tems often used in robotics.

Cooperative Target. In a cooperative target system, the targets emit a
signal with known characteristics, and other elements of the system de-
tect the signals and use information about the signal arrivals to deduce
the target’s location. Often a cooperative target system also involves
some synchronization mechanism to readily compute signal ToF. This
category includes both infrastructure-less systems and systems that lo-
calize with respect to infrastructure receivers. Infrastructure-based sys-
tems include the ORL Active Bat and the service phase of the GALORE



localization system [7]. Infrastructure-less systems include the boot-
strapping phases of both the GALORE and Smart Kindergarten systems.

Cooperative Infrastructure. In a cooperative infrastructure system, el-
ements of the infrastructure emit signals that targets can receive. The
infrastructure itself is assumed to be carefully configured and synchro-
nized to simplify the processing done by the target. Another property
of this system structure is that receivers can compute their own location
passively, without requiring any interaction with the infrastructure. Ex-
amples of this type of system include GPS and the MIT Cricket system
[14], and the service phase of the Smart Kindergarten system.
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Passive Localization. Passive localization techniques differ from active
ones in that they discover ranges and locations by passively monitoring existing
signals in a particular channel. The term “passive” does not imply that they
emit no signals, only that the signals they emit are outside the channel that is
primarily analysed for time-of-flight measurement. For example, a technique
that uses RF signals for synchronization and coordination, but measures range
by TDoA of ambient acoustic signals would still be considered passive.

Blind Source Localization. In a blind source localization system, a sig-
nal source is localized without any a priori knowledge of the type of
signal emitted. Typically this is done by “blind beam-forming”, which
effectively cross-correlates the signals from different receivers. These
techniques generally only work so long as the signals being compared
are “coherent”, which in practice often limits the spacing of receivers
because of signal distortion induced by the environment. Coherent com-
bining techniques can generally localize the most prominent source within
the convex hull of a sensor laydown, or alternatively can compute a bear-
ing angle to a distant source, but not a range or location. This work is
described by Yao et. al.[19].

Passive Target Localization. Similar to blind localization, a passive
target localization system is usually based on coherent combination of
signals, with the added assumption of some knowledge of the source. By
assuming a model for the signals generated by the source, filtering can be
applied to improve the performance of the algorithms and to reduce the
computational and communications requirements. Examples include our
previous example of habitat monitoring, UCLA work on beamforming
[20], and some E911 cell phone location proposals.

Passive Self-localization. In passive self-localization, existing beacon
signals from known infrastructure elements are used by a target to pas-
sively deduce its own location. Most commonly, properties of RF signals
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from base stations are used to deduce location of a mobile unit. Exam-
ples include RADAR [1], which measured RSSI to different 802.11 ac-
cess points, and the work of Bulusu et. al.[2], which measured RSSI to
Ricochet transmitters.

Cross-cutting Issues. As a rule, active and cooperative techniques tend
to be more accurate, more efficient, and generally more effective. Because
cooperative techniques can design both the receiver and transmitter, the designs
can be optimized for performance much more effectively. Cooperative systems
can also synchronize explicitly, improving the performance of ranging based
on signal propagation time. However, applications such as habitat monitoring
can only be addressed using passive techniques. Although passive techniques
are attractive because they can leverage existing signaling, they often perform
poorly when the signaling is not designed with ranging or localization in mind.

Another aspect of sensor network localization that cuts across these cate-
gories is an ability to support ad-hoc deployment and operation. In an ad-hoc
setup, there is no guarantee that all the sensor nodes will be in communica-
tion and sensing range to each other, nor that the sensing and communications
properties will remain constant over time. Thus, regardless of category, sys-
tems that can operate in an ad-hoc fashion must collaborate across the sensor
nodes, must operate within a multihop network, and must react to system dy-
namics. These issues will be addressed further in Section 15.5.

15.4 RANGING TECHNOLOGIES

When designing a localization system, an important factor in the design are
the mechanisms used to measure physical distances and angles. Typically for
cooperative systems this will involve some kind of emitter and detector pair.
The selection of these elements has a significant impact on how well the final
system will fit the application requirements. In this section, we will discuss
the relative merits of three types of ranging mechanism, based on visible light,
radio signals, and acoustic signals.

15.4.1 RANGING USING RF

RF ranging generally follows one of two approaches: distance measured
based on received signal strength, and distance measured based on the ToF of
the radio signal.

RF RSS. Received Signal Strength (RSS) is roughly a measure of the am-
plitude of a detected radio signal at a receiver. If we assume a model for path
loss as a function of distance, the received signal strength should generally de-
crease as a function of distance. The path loss model is highly dependent on



environmental factors: in open space the model is near the ground, the
model is closer to Under some conditions (e.g. waveguides, corridors,
etc.), path loss can actually be lower than in free space, e.g. Because
the path loss model is dependent on details of the environment, automatically
choosing a valid model can be difficult.

In practice, the behavior of RSS is dependent on a number of factors, not
the least of which is simply whether the RSS estimator is well designed. Some
radios, such as the RFM radio used in the Berkeley mote, just sample the base-
band voltage to estimate RSS, which is a very crude measurement; other radios
have a more capable measurement circuit. Another important factor is the fre-
quency range used by the radio. Multipath fading is a change in RSS caused by
the constructive or destructive interference of reflected paths. Multipath fading
is dependent on the environment and is in many cases dependent on the fre-
quency of the signals being transmitted. A radio that uses just one frequency
will be more susceptible to multipath fades that will cause substantial error
in a distance estimate based on RSS. If a variety of frequencies are used and
appropriate filtering is applied, the effects of frequency dependent multipath
fading may be removed from the RSS estimate, although frequency indepen-
dent multipath such as ground reflection will still be present. In general, the
effectiveness of RSS estimation varies from system to system and cannot be
implemented without hooks into the internals of the radio hardware.

Another difficulty with using RSS is that the transmit power at the sender
may not be accurately known. In many cases this is a function of specific
component values on a given board, or a function of battery voltage. With-
out knowing the original transmit power it it may not be possible to correctly
estimate the path loss.

RF Time of Flight. Measuring the time of flight of radio signals is another
possible solution. Because the ToF of a radio signal is not very dependent on
the environment, ToF approaches can be much more precise than approaches
based on measuring RSS. The two main challenges in implementing an RF
ToF scheme are: (1) synchronization must use signals also traveling at the
speed of light, and (2) to achieve high precision ToF measurements require
high frequency RF signals and fast, accurate clocks.

The timing and synchronization issues are the central problems with RF ToF
ranging. The synchonization problem is simplified for Infrastructure based
systems where elements of the infrastructure can be synchronized by some
out-of-band mechanism, or by taking into account knowledge of their exact lo-
cations. However, this does not eliminate the need for accurate clocks, which
tend to be expensive in terms of power. For example, GPS satellites carry
atomic clocks for timing, but these clocks are continually adjusted to account
for relativistic effects as they orbit the earth, and the trajectory of the satel-
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lites is carefully measured. In more down-to-earth implementations, in most
RF ToF ranging implemenations, the infrstructure elements are connected by
carefully measured cables to achieve synchronization.

However, for ad-hoc deployments, the lack of a common timebase means
that “round trip” messages must be used in order to compare send and re-
ceive times within the same timebase. The time spent “waiting” at the remote
transponder must then be measured and subtracted. This requires that the two
systems’ clocks be running at close to the same rate, or that the turnaround
time be a fixed constant. Getting these details to work correctly, given the fact
that all the timing must be very precise (30 cm of error per ns), can be quite
challenging from a hardware perspective.

Probably the best path toward an ad-hoc RF ToF solution is to leverage
the hardware of a sufficiently advanced radio system, such as 802.11 or an
ultra-wide band (UWB) receiver. Because these systems operate at high bit
rates and must match clock rates in order to inter-operate, there is a better
chance that it is possible to exploit their features to implement ranging. Some
802.11 chipsets have ranging support, although at press time we do not have
any references to implementations that use them successfully. UWB ranging
solutions have been advertised, however because of licensing restrictions and
other issues there have been no documented implementations in the sensor
networks space.

Bearing estimates for incoming RF signals require similar types of designs.
By implementing a radio with an array of antennae, the signals from those
independent reception points can be compared to estimate direction of arrival
(DoA). While these techniques are commonplace in radar systems and com-
mercial wireless systems, currently this kind of feature is not available on
small, low-power platforms. However, similar designs to those that enable
ranging might someday also enable DoA estimation.
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15.4.2 RANGING USING ACOUSTICS

Acoustic ranging is probably the most developed ranging technology in use
in sensor networks. There are a number of factors that make acoustics attrac-
tive, given currently available COTS components. Acoustic transducers are
easy to interface, and simple, inexpensive detector chipsets are available for
ultrasound. However the key advantage to using acoustics is that timing and
synchronization is much easier to implement. A 32 KHz clock is sufficient
to achieve ranging accuracy to 1 cm, and synchronization between sender and
receiver can be implemented using most radio modules without modification.

In terms of power, acoustics performs quite well, even near the ground.
Whereas RF communication suffers path loss near the ground because ground
reflections are phase-shifted by 180 degrees, this is not the case for acoustic



waves. Acoustic path loss near the ground under good conditions is much
closer to Outdoors, acoustics is susceptible to interference from weather
conditions, such as wind that causes noise, and convective updrafts that carry
signals up and away from the ground.

However, acoustics has a few disadvantages as well. First, acoustic emitters
tend to be physically large, especially if they emit low frequencies. The other
main disadvantage is that acoustic signals are stopped by solid obstructions.
However, for some applications this can be advantageous, such as the case of
an asset tracking system which only needs to know which room the asset is in.

When using acoustics, a wide band of frequencies are available for use.
Some systems are based on ultrasound frequencies (typically 40 KHz to 1
MHz), while others are based on audible frequencies (100 Hz to 20 MHz).
Some systems use tuned piezo emitters at specific frequencies, while others
use wide-band acoustic signals. The choice of frequency depends on the appli-
cation (e.g. is audible sound acceptable), as well as the environment.

Experience with 40 KHz ultrasound systems outdoors indicates a typical
range of about 10 meters at a voltage of 3 volts, and about 16 meters at 16 volts.
The type of emitter used also has a significant effect on the performance of
the system. Many ultrasound emitters are directional, substantially increasing
their output in a conical beam. This can be disadvantageous from a packaging
perspective, as it may require many emitters and receivers in order to support
ad-hoc deployment.

Audible acoustics can be very effective outdoors, because of the wide di-
versity of wavelengths possible. A wide-band signal will be more robust to
environmental interference, because of the process gain in the detection pro-
cess. A wide-band signal is also less susceptible to narrowband sources of
noise, as well as absorption and scattering of specific frequencies.

Under ideal weather conditions, audible ranging systems have been shown
to achieve ranges as large as 100m for power levels of 1/4 Watt. High power
emitters such as heavy vehicles are detectable at ranges of 10’s of kilometers.
Acoustic range is longest at night when the air is still and cool. The worst
conditions for acoustics are warm, sunny afternoons, when heated air near the
ground rises and deflects signals up and away from other ground-based re-
ceivers. Under these conditions, the same acoustic system might achieve only
10m range.

Errors in line-of-sight (LoS) acoustic ranges tend in general to be indepen-
dent of distance, up to the limit of the signal detector. However, when ob-
structions or clutter are present, severe attenuation can be observed, as well as
radical outliers when the LoS path is completely blocked and a reflected path is
detected. When designing positioning algorithms around an acoustic ranging
system it is important to take these issues into account.
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Bearing estimates for acoustic signals can often be implemented without
much difficulty using simple hardware and software solutions. If the baseline
between sensors is known with sufficient accuracy, a bearing estimate can be
derived from the time difference of arrivals. There are several examples of
implemented systems that measure DoA using acoustics, the MIT software
compass[21], and beam-forming systems[20].

The importance and plethora of applications in multihop sensor networks,
motivated the development of diverse set of positioning algorithms. The ability
to operate in a multihop regime allows nodes with short-range signal transmis-
sions to collaboratively localize themselves across larger areas. These proper-
ties make multihop ad-hoc localization an appealing choice in ad-hoc deployed
sensor networks, rapidly installable infrastructures and fine-grained localiza-
tion in indoor settings where the multihop and ad-hoc nature of the system can
compensate for the presence of obstacles and many other settings where other
infrastructure based technologies such as GPS cannot operate.
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15.5 POSITIONING IN MULTIHOP SENSOR
NETWORKS

15.5.1 LOCALIZATION CHALLENGES IN
MULTIHOP AD-HOC SENSOR NETWORKS

Despite the attractiveness of ad-hoc multihop localization, the application
requirements need to be carefully reviewed before any design choices are made.
Unfortunately the flexibility promised by such localization systems is also cou-
pled with large set of challenges and trade-offs that have so far inhibited their
widespread deployment. Some of these challenges are listed here.

Physical Layer Challenges. As described in the previous section, mea-
surements are noisy and can fluctuate with changes in the surrounding envi-
ronment.

Algorithm Design Challenges. The algorithm designer needs concurrently
consider multiple issues when designing such systems.

Noisy measurements call for the use of optimization techniques that
minimize the error in position estimates. Despite the well-established
body of knowledge in optimization techniques, the use of any optimiza-
tion algorithm is only as good as the validity of the assumptions on the
underlying measurement error distribution in the actual deployment sce-
nario.



Computation and communication trade-offs. Cost and energy limi-
tations force designers to consider the development of lightweight dis-
tributed algorithms that can operate on low cost resource constrained
nodes, where the computation is performed inside the network.

Problem setup. A large variety of problem setups has appeared in the
literature. Some approaches consider the use of a small percentage
of location aware anchor nodes spread randomly distributed inside the
network. Some other approaches, suggest that one should ensure that
enough anchor nodes are placed on the network perimeter, while some
others advocate anchor free setups. In addition to the detup decision, the
type of measurements used in each case, vary across different solutions,
some try to infer locations based on mere connectivity information while
others, use angular and/or distance measurements.

Error behavior and scalability. Perhaps the most overlooked aspect of
multihop localization in currently proposed solutions is understanding
how the network parameters affect the resulting position error behavior
and scalability. Network topology and geometry between nodes, net-
work density, ranging accuracy, anchor node concentration and uncer-
tainty in anchor node locations, affect the quality of location estimates;
therefore their behavior needs to be formally understood.
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System Integration Challenges. All the previously discussed require-
ments imply a non-trivial system integration effort. Many off-the-shelf mea-
surement technologies are not directly suitable for use in sensor networks, so
customized hardware and software often needs to be developed to make a func-
tional system.

15.5.2 OVERVIEW OF MULTIHOP LOCALIZATION
METHODS

Despite the numerous proposals, very few ad-hoc localization systems have
been built and evaluated in practice. Furthermore, the side-by-side comparison
of different approaches is a non-trivial task due to the differences in problem
setup and underlying assumptions. In the remainder of this section we high-
light some of the recently proposed approaches by broadly classifying them
as connectivity based and measurement based approaches. Later on we also
comment on some of the trends associated on position error based Cramér Rao
bound analysis.



Connectivity-based approaches try to leverage radio connectivity to infer
node locations. Although radio connectivity alone cannot provide fine-grained
localization, it can provide a good indication of proximity that is useful in
supporting other network level tasks such as geographic routing. The GPS-less
low cost localization system described in [2] is an example of a connectivity
based system. In this system, a set of pre-deployed, location aware reference
nodes transmit spatially overlapped beacon signals. Other nodes with unknown
locations can localize themselves at the centroid of the reference nodes from
which they can receive beacon signals. The best results are obtained when the
nodes are arranged in a mesh pattern.

The convex position estimation approach proposed by Doherty et. al. in
[4] also localizes nodes using radio connectivity. In this case the localization
is formulated as a linear or semi definite program that is solved at a central
location. This approach also requires a set of nodes with known locations to
act as beacons. With careful placement of the beacon nodes on the perimeter
of the network the authors have shown that node locations between 0.64 and
0.72R (where R is the radio transmission range) are possible at density of 5.6
neighbors per node.

A more recent proposal based on multidimensional scaling (MDS) can solve
for the relative position of the nodes with respect to each other without requir-
ing any beacon nodes [17]. This is done by using a classical MDS formulation
that takes node connectivity information as inputs and creates a two dimen-
sional relative map of the nodes that preserves the neighborhood relationships.
The connectivity only approach uses hop distances between nodes to initialize
a distance matrix. The same MDS formulation can take more accurate inter-
node distances to construct more accurate maps.
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15.5.3 RADIO CONNECTIVITY BASED
APPROACHES

15.5.4 MEASUREMENT BASED APPROACHES

Measurement based approaches build upon a wide range of measurement
technologies. While different approaches focus on specific ranging systems, a
large source of disparity in measurement-based algorithms stems from differ-
ent assumptions about measurement error distribution. Some systems assume
additive Gaussian noise, while others assume that measurement error is pro-
portional to distance. Furthermore, some algorithms require a set of initial
anchor nodes, whereas others perform relative localization and use anchors
only at the end of the localization process to translate the derived relative co-
ordinate system to an absolute coordinate system. Because of these reasons,
in this section we do not attempt a direct comparison of existing approaches,



instead highlighting the key features of each approach. We begin with anchor
free approaches, followed by approaches that use anchor nodes.

An example algorithm that does not require anchor nodes is described in
[3]. This relative localization system is based on radio ToF measurements and
uses geometric relationships to estimate node positions. First, all the nodes
compute their locations with respect to their neighbors. The resulting local co-
ordinate systems are then aligned and merged into a global coordinate system
using a simple set of geometric relationships. The position estimates acquired
by this method are not very accurate due to the noisy ToF measurements and
error propagation. Despite this loss of precision, the location estimates are still
adequate to help with network level tasks such as geo-routing.

Another notable anchor-free localization method has been developed by [9].
In this work Moses et. al. have shown that sensor node positions and orienta-
tions can be estimated using signals from acoustic sources with unknown loca-
tions. Each acoustic source generates a known acoustic signal that is detected
by the sensor nodes. The sensor nodes in turn measure the ToA and DoA of
the signal and propagate this information to a central information-processing
center (CIP). The CIP fuses the information using Maximum Likelihood esti-
mation to obtain the location and orientation of the sensor nodes. The authors
also consider cases where partial measurements (i.e either ToA or DoA) are
available.

The localization system developed as part of the GALORE project at UCLA
is another example of an anchor-free ad-hoc positioning system[7]. This sys-
tem is composed of standard, unmodified iPAQs and Berkeley Motes with
acoustic daughter cards. The system operates in two phases: a self configura-
tion phase in which the iPAQs collectively construct a relative 3-D coordinate
system, and a service phase in which the iPAQs can localize a mote and report
its location back. In this system, iPAQs are acoustic emitters and receivers, and
motes are acoustic emitters only. A time synchronization service component
maintains time conversions between all adjacent components of the system,
and ranges from one node to another are computed by measuring the time of
flight of acoustic signals. The positioning algorithm is a centralized algorithm
based on relaxation of a spring model in which range measurements map to
spring “lengths”. A novel element of the spring algorithm is that the spring
constants are non-linear: the springs are modeled as easier to compress than to
stretch. This has the effect of favoring short ranges over long ranges, which is
more consistent with the errors encountered with acoustics, where excess path
measurement is more likely than a “short” range.

The Ad-Hoc Positioning System proposed by Nicolescu and Nath in [11]
estimates the locations in an ad-hoc network by considering distances to a set
of landmarks. This study explores three alternative propagation methods: DV-
hop, DV-distance, and Euclidean. In the DV-hop method, landmarks propagate
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their location information inside the network. Each node forwards the land-
mark information to its neighbors and maintains a table with the landmark ID,
location, and hop distance. When a landmark receives one of the propagated
packets with the position of a different landmark, it uses that information to
calculate the average hop-distance between the two landmarks. The computed
average hop distance is broadcasted back into the network as a correction to
previously known hop distances. The nodes that receive this message use the
average hop distances to each of the landmarks to estimate their distances to
the landmarks. This information is then used to triangulate the node location.
The corrections are propagated in the network using controlled flooding. Each
node will forward a correction from a certain landmark only once in an effort
to ensure nodes will receive only one correction from the closest landmark.
This policy tries to account for anisotropies in the network.

The DV-distance approach is similar to DV-hop but uses radio received sig-
nal strength measurements to measure distances. Although this approach gives
finer level granularity, it is also the most sensitive to measurement error since
the received signal strength is greatly influenced by the surrounding environ-
ment and therefore not always consistent.

The Euclidean propagation method uses the true distance measurement to a
landmark. In this case, nodes that have at least two distance measurements to
nodes that have distance estimates to a landmark can use simple trigonometric
relationships to estimate their locations. The reported simulation results indi-
cate that the DV-hop propagation method is the most accurate of the three and
determines the positions of nodes within one-third of the radio range in dense
networks.

Another approach described in [15] uses an algorithm similar to DV-Hop
called Hop-TERRAIN in combination with a least squares refinement. The
Hop-TERRAIN finds the number of hops to each anchor node and uses the
anchor positions to estimate the average hop lengths. The average hop lengths
are broadcasted back into the network and are used by nodes with unknown
positions to compute rough estimates of their locations. Each node with un-
known location that receives a message with the average hop length, estimates
its distance to each anchor by multiplying the average hop distance with the
number of hops to each anchor. Once a node knows the distance to each an-
chor, it estimates its location using triangulation. In the refinement phase, each
node uses the more accurate distance measurements to its neighbors to obtain
a more accurate position estimate using least squares refinement.

The collaborative multilateration approach described in [16] uses a three-
phase process to estimate node locations. During the first phase, the nodes
compute a set of initial estimates by forming a set of bounding boxes around
the nodes. The nodes then organize themselves into over-constrained groups
in which their positions are further refined using least squares. The refinement
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phase is presented in two computation models centralized and distributed. The
centralized computation model requires global information over the entire net-
work. The distributed computation model is an approximation of the central-
ized model in which each node is responsible to compute its own location by
communicating with its one-hop neighbors. The key attribute that makes the
distributed collaborative multilateration possible is its in-sequence execution
within an over-constrained set of nodes. In distributed collaborative multilater-
ation, each node executes a multilateration using the initial position estimates
of its one-hop neighbors and the corresponding distance measurements. The
consistent multilateration sequence helps to form a global gradient that allows
each node to compute its own position estimate locally by following a gradient
with respect to the global constraints.

In addition to the distance-based approaches, some work has also proposed
systems using angular measurements. The Angle-of-Arrival system described
in [12] is an example of a system that uses angle measurements in a multihop
setup to determine node locations.
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15.6 NETWORK SETUP ERROR TRENDS

In addition to the error incurred due to noisy measurements, the error in
position estimates also depends on network setup parameters such as network
size, beacon node concentration and uncertainties in the beacon locations as
well error propagation when measurement information is used across multiple
hops. In this section we outline the behavior of these effects using results from
Cramér Rao bound (CRB) simulations. CRB is a classical result from statistics
that give a lower bound on the error covariance matrix of any unbiased estima-
tor. In our discussion, CRB is used as a tool for analyzing the error behavior in
multihop localization systems that use angle and distance measurements with
Gaussian measurement error. The details on the actual bound derivation can be
found in [6]. A close examination of this error behavior can provide valuable
insight for the design and deployment of multihop localization systems.

The first notable trend relates to the behavior of localization error with re-
spect to network density. Intuitively, localization accuracy expected to in-
crease with increasing network connectivity. From the CRB simulations re-
sults shown in figures 15.1 and 15.2 one can observe that localization accuracy
improves asymptotically with network density. Initially, there is a rapid im-
provement at densities between 6 and 10 neighbors per node. Later on, as the
number of neighbors per node increases, the improvement becomes more grad-
ual. Figures 15.1 and 15.2 show the corresponding curves for the cases when
distance and angular measurements are used. The shows the RMS lo-
cation error normalized by the measurement covariance of the measurement
technology used.
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Another useful observation is that in angle-only measurements the location
error is approximately one order of magnitude more than the error when dis-
tance measurements are used. Furthermore, when angle measurements are
used, the error increases proportionately with range. In Figure 15.2 the er-
ror when angle-only measurements are used decreases faster than the distance
measurement case. This is because to increase density, the area of the sensor
field was reduced. As a side effect, the distances between nodes have also been
reduced, thus reducing the tangential error in the measurement. The opposite
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effect would take place if the detection range of the nodes were increased, to
increase density.

Another important trend to evaluate is error propagation when measurement
information is used over multiple hops. Figure 15.3 shows how the error prop-
agates in an idealized hexagonal placement scenario, where all the nodes with
unknown locations have exactly six evenly spaced neighbors. The error in both
distance and angular measurements has the same trend. Error propagation is
sub-linear with the number of hops. Furthermore, error propagates faster when
distance measurements are used than when angle measurements are used.



The Smart Kindergarten project at UCLA [18] has developed a deeply in-
strumented system to study child development in early childhood education.
Fine-grained localization is a key component of this system and it is realized
using two different sensor node platforms (see figure 15.5). The first one is a
wearable tag, called the iBadge [13]. This is attached to a vest worn by the
student, or mounted on top of a special cap worn by the student. The local-
ization of these iBadges is made possible by a second type of sensor node, the
Medusa MK-2. The Medusa MK-2 nodes are a set of self-configuring beacon
nodes deployed on the ceiling to act as anchors for localizing and tracking the
iBadges. These nodes are equipped with four pairs of 40KHz ceramic ultra-
sonic transceivers (4 transmitters and 4 receivers) capable of omni directional
transmission and reception of ultrasonic signals over a hemispherical dome.
Once deployed on the classroom ceiling, the self-configuring beacons first ex-
ecute a bootstrapping phase, before entering their beaconing mode. During the
bootstrapping phase, each beacon measures distances to its neighboring bea-
cons using its 40KHz ultrasonic ranging system. The distance measurements
are forwarded to a central processing station that computes a relative coordi-
nate system and notifies each beacon node of its coordinates.

Once all the beacon nodes are initialized with their locations, they enter a
service mode. When in service mode, the beacons coordinate with each other
to broadcast a sequence of radio and ultrasound signals. These signals are
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15.7 CASE STUDY: SELF CONFIGURING BEACONS
FOR THE SMART KINDERGARTEN



Despite the recent research efforts, and the diversity of proposed solutions,
several research challenges remain to be addressed. In most proposed ap-
proaches, the lack of experimental data has so far prevented the evaluation of
many localization algorithms under realistic conditions. Furthermore, the mul-
tidimensional nature of the problem suggests that the consideration of multiple
measurement modalities would improve the robustness of localization systems.
Although such schemes have been frequently stated in the literature, the details
of fusing information at the measurement level have not been fully explored.

From a theoretical viewpoint, the fundamental characterization of error be-
havior under different measurement error distributions is still a topic of active
research. In this chapter we have described a subset of the initial results charac-
terizing error behavior. Further studies are needed to understand the effects of
error propagation under different measurement distributions. Finally we note
that node localization is an application specific problem for which a one size
fits all solution is unlikely to exist for all applications. Since each application
is likely to have its own requirements in terms of accuracy, latency and power
consumption, node localization needs to be explored further in the context of
each target application.
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concurrently detected by multiple iBadges in the room. The iBadges use the
broadcasted signals to measure distances to each other by timing the differ-
ence in the time of detection of the radio and ultrasound signals. With this
information, the iBadges can compute and track their location using the on-
board, DSP processor, or alternatively they can propagate the raw data back
to the central processing station that tracks the iBadges using more powerful
tracking algorithms.

15.8 CONCLUSIONS
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